Jobs associated with technological change in the residential heating sector

Results from the EU heating decarbonisation scenario

Unnada Chewpreecha

9 May 2019
The study looks at impact of changes in the residential heating sector

- Many studies look at making homes more efficient through better insulations
- This will not eliminate fuel use by households completely
- To decarbonise residential heating, new heating system technologies are needed

Barriers to technological changes

1. **Slow turnover**
 - only 5% of stock need to be replaced within each year

2. **Diverse preference**
 - May not always prefer one technology even if it is made cheaper

3. **Inertia**
 - even if all households prefer new technologies, not all households would immediately adopt new technologies
 - lack of information
 - lack of access to finance
 - Industry constraints

Policy intervention is needed to encourage take up of new heating technologies
Tools used for the analysis

• Bottom up technologies model of residential heating (FTT-Heat) with a global macroeconomic model (E3ME)

• Both models are simulation models meaning
 – based on decision making rather than social planning (optimisation)
 – imperfect decision making due to lack of information and other barriers
 – decision makings can be affected by policies
 – learning by doing, costs come down over time and technologies are path dependent

• Detailed coverage and complete energy-environment-economy
 – 59 world regions, each with 69 sectors, 13 heating technologies
 – annual projections to 2050
 – all impacts are captured in one single framework
Policies introduced to address new technologies barriers

<table>
<thead>
<tr>
<th>Market based</th>
<th>Regulations</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tax</td>
<td>Phase out in sales</td>
<td>Labelling (proxy by lower discount rate)</td>
</tr>
<tr>
<td>Fuel tax</td>
<td>Phase-out in stock</td>
<td></td>
</tr>
<tr>
<td>Fuel rebate</td>
<td>Regulated market share</td>
<td></td>
</tr>
<tr>
<td>Purchase tax</td>
<td>Procurement/ Kick Start</td>
<td></td>
</tr>
<tr>
<td>Purchase subsidies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed-in-tariff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-interest loan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scenarios are based on policies mix

- **Scenario 1**: Share of renewables increase by +10pp until 2030
- **Scenario 2**: Deep decarbonisation by 2050
- **Scenario 3**: EU wide carbon tax

Table 1: Overview of scenarios 1-3 and simulated policies by group of Member States, from 2018-30 and 2030-50. Green indicates that a policy is implemented for a group of Member States in the given period, red indicates that a policy is not implemented.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>2018-2030</th>
<th>2030-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member States:</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Scenario 1</td>
<td>Carbon tax</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Upfront subsidy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'Kick start' policies</td>
<td></td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Carbon tax</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Upfront subsidy</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>'Kick start' policies</td>
<td>X</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>Carbon tax</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Upfront subsidy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'Kick start' policies</td>
<td></td>
</tr>
</tbody>
</table>
Using policies, we can decarbonise households heating

Scenario 2 shows 98% reduction in CO₂ emissions from residential heating
Macroeconomic impacts are small

• Overall, impact on GDP and employment are small

• Consumer expenditure falls
 – carbon tax reduces disposable income
 – higher spending on expensive heating appliances cause other spending to fall

• Boost to investment from higher electricity demand

• Reduction in fossil fuel imports
Households heating related expenditure

- Higher spending on carbon tax and appliances while the transition takes place
- In the long run, higher spending on electricity but will be compensated by savings on fossil fuels
Heating related jobs- there will be losers and winners

• Network energy supply (e.g. gas networks) jobs are at stake
• But it may well be different if the existing networks are used for the provision of renewable energy, such as biogas (which was not considered within this analysis)
Jobs impacts – minimising loss & promote opportunities

• Jobs impacts from heating decarbonisation would have been worse without using carbon tax revenues to lower other tax
 – example: use tax revenues to reduce employers’ social security contribution
• Retrained/repurpose fossil fuels-related jobs
• Carefully manage the transition for affected workers and communities
• Encourage domestic industry to become world leader in renewable heating providers
• Ensure necessary skills are available to support the transition
 – engineers, plumbers, etc
Further readings

- Our recent blog on the 2025 ban on gas and oil heating system

Key points to note:
- Gas will still be around for a long time, even with the ban, due to the long lifetime of existing systems.
- Displaced gas is replaced mainly with standard electric systems, i.e. panel and storage heaters. The share of heat pumps in the overall mix changes only slightly.
- The ban may discourage existing home owners from shifting to more efficient condensing gas boilers if they are gradually being phased out.
- The six-year lead time on the announcement is sensible. This gives companies the chance to become familiar with and develop new technologies to meet demand.
- The electricity grid in its present form would struggle to cope with such an outcome; more investment would be needed to cover peak-time demand.

Further readings (continue)

- Globally: simulating the deep decarbonisation of residential heating for limiting global warming to 1.5 °C

- Globally: decarbonisation in all sectors
 - https://www.camecon.com/blog/estimate-global-value-stranded-fossil-fuel-assets/
Get in touch!

Unnada Chewpreecha
Principal Economic Modeller

Cambridge Econometrics
uc@camecon.com
+44 (0) 1223 533100

www.camecon.com
www.e3me.com