Publications by year
2023
Tavares JV, Oliveira RS, Mencuccini M, Signori-Müller C, Pereira L, Diniz FC, Gilpin M, Marca Zevallos MJ, Salas Yupayccana CA, Acosta M, et al (2023). Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests.
Nature,
617(7959), 111-117.
Abstract:
Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
AbstractTropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, $$\varPsi $$
. Ψ
. 50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3–5, little is known about how these vary across Earth’s largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters $$\varPsi $$
. Ψ
. 50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both $$\varPsi $$
. Ψ
. 50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth–mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.
Abstract.
Barros FDV, Lewis K, Robertson AD, Pennington RT, Hill TC, Matthews C, Lira-Martins D, Mazzochini GG, Oliveira RS, Rowland L, et al (2023). Cost-effective restoration for carbon sequestration across Brazil's biomes. Science of the Total Environment, 876, 162600-162600.
Ordóñez-Parra CA, Dayrell RLC, Negreiros D, Andrade ACS, Andrade LG, Antonini Y, Barreto LC, Barros FDV, Carvalho VDC, Corredor BAD, et al (2023). Rock n' Seeds: a database of seed functional traits and germination experiments from Brazilian rock outcrop vegetation.
Ecology,
104(1).
Abstract:
Rock n' Seeds: a database of seed functional traits and germination experiments from Brazilian rock outcrop vegetation
Advancing functional ecology depends fundamentally on the availability of data on reproductive traits, including those from tropical plants, which have been historically underrepresented in global trait databases. Although some valuable databases have been created recently, they are mainly restricted to temperate areas and vegetative traits such as leaf and wood traits. Here, we present Rock n' Seeds, a database of seed functional traits and germination experiments from Brazilian rock outcrop vegetation, recognized as outstanding centers of diversity and endemism. Data were compiled through a systematic literature search, resulting in 103 publications from which seed functional traits were extracted. The database includes information on 16 functional traits for 383 taxa from 148 genera, 50 families, and 25 orders. These 16 traits include two dispersal, six production, four morphological, two biophysical, and two germination traits—the major axes of the seed ecological spectrum. The database also provides raw data for 48 germination experiments, for a total of 10,187 records for 281 taxa. Germination experiments in the database assessed the effect of a wide range of abiotic and biotic factors on germination and different dormancy-breaking treatments. Notably, 8255 of these records include daily germination counts. This input will facilitate synthesizing germination data and using this database for a myriad of ecological questions. Given the variety of seed traits and the extensive germination information made available by this database, we expect it to be a valuable resource advancing comparative functional ecology and guiding seed-based restoration and biodiversity conservation in tropical megadiverse ecosystems. There are no copyright restrictions on the data; please cite this paper when using the current data in publications; also the authors would appreciate notification of how the data are used in publications.
Abstract.
2022
Soares Jancoski H, Schwantes Marimon B, C. Scalon M, de V. Barros F, Marimon‐Junior BH, Carvalho E, S. Oliveira R, Oliveras Menor I (2022). Distinct leaf water potential regulation of tree species and vegetation types across the Cerrado–Amazonia transition.
Biotropica,
54(2), 431-443.
Abstract:
Distinct leaf water potential regulation of tree species and vegetation types across the Cerrado–Amazonia transition
AbstractThe Cerrado–Amazonia transition harbors forest and savanna formations under the influence of pronounced climate seasonality; however, the water use strategies of this key region is not yet well understood. This study aimed at deciphering in intra‐ and interspecific variability in leaf water potential regulation among species across three distinct vegetation types (typical cerrado, cerradão, and semideciduous seasonal forest) of the Cerrado–Amazonia transition region. We expected a variation across iso/anisohydric strategies driven by plant–environment interactions and by species attributes (phenology and wood density). We selected 21 dominant species (seven per vegetation type), recorded their phenological strategy and wood density, and measured leaf water potential (Ψl) during the dry and rainy seasons to analyze variations associated with minimum Ψl, predawn Ψl (ΔΨpd), and midday Ψl (ΔΨmd) under the effect of variable vapor pressure deficit (VPD). The variation in Ψl across species was higher in the dry season than in the rainy season for all vegetation types. Most species from typical cerrado and cerradão showed similar behavior patterns, with higher Ψl regulation under high VPD and lower ΔΨpd. In contrast, most forest species showed lower regulation under high VPD, and higher ΔΨpd. Total or partial deciduousness together with strong stomatal regulation seems to be common water regulation strategies in the dry season for cerrado species but not for forest species. Our results suggest that, if drought events become more intense and frequent as predicted, seasonal forest species may be more vulnerable due to their lower Ψl regulation.Abstract in Portuguese is available with online material.
Abstract.
Lewis K, Barros FDV, Moonlight PW, Hill TC, Oliveira RS, Schmidt IB, Sampaio AB, Pennington RT, Rowland L (2022). Identifying hotspots for ecosystem restoration across heterogeneous tropical savannah-dominated regions.
Philosophical Transactions of the Royal Society B: Biological Sciences,
378(1867).
Abstract:
Identifying hotspots for ecosystem restoration across heterogeneous tropical savannah-dominated regions
. There is high potential for ecosystem restoration across tropical savannah-dominated regions, but the benefits that could be gained from this restoration are rarely assessed. This study focuses on the Brazilian Cerrado, a highly species-rich savannah-dominated region, as an exemplar to review potential restoration benefits using three metrics: net biomass gains, plant species richness and ability to connect restored and native vegetation. Localized estimates of the most appropriate restoration vegetation type (grassland, savannah, woodland/forest) for pasturelands are produced. Carbon sequestration potential is significant for savannah and woodland/forest restoration in the seasonally dry tropics (net biomass gains of 58.2 ± 37.7 and 130.0 ± 69.4 Mg ha
. −1
. ). Modelled restoration species richness gains were highest in the central and south-east of the Cerrado for savannahs and grasslands, and in the west and north-west for woodlands/forests. The potential to initiate restoration projects across the whole of the Cerrado is high and four hotspot areas are identified. We demonstrate that landscape restoration across all vegetation types within heterogeneous tropical savannah-dominated regions can maximize biodiversity and carbon gains. However, conservation of existing vegetation is essential to minimizing the cost and improving the chances of restoration success.
.
. This article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’.
Abstract.
Lewis K, de V Barros F, Cure MB, Davies CA, Furtado MN, Hill TC, Hirota M, Martins DL, Mazzochini GG, Mitchard ETA, et al (2022). Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products.
Sci Rep,
12(1).
Abstract:
Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products.
Native vegetation across the Brazilian Cerrado is highly heterogeneous and biodiverse and provides important ecosystem services, including carbon and water balance regulation, however, land-use changes have been extensive. Conservation and restoration of native vegetation is essential and could be facilitated by detailed landcover maps. Here, across a large case study region in Goiás State, Brazil (1.1 Mha), we produced physiognomy level maps of native vegetation (n = 8) and other landcover types (n = 5). Seven different classification schemes using different combinations of input satellite imagery were used, with a Random Forest classifier and 2-stage approach implemented within Google Earth Engine. Overall classification accuracies ranged from 88.6-92.6% for native and non-native vegetation at the formation level (stage-1), and 70.7-77.9% for native vegetation at the physiognomy level (stage-2), across the seven different classifications schemes. The differences in classification accuracy resulting from varying the input imagery combination and quality control procedures used were small. However, a combination of seasonal Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (surface reflectance) imagery resulted in the most accurate classification at a spatial resolution of 20 m. Classification accuracies when using Landsat-8 imagery were marginally lower, but still reasonable. Quality control procedures that account for vegetation burning when selecting vegetation reference data may also improve classification accuracy for some native vegetation types. Detailed landcover maps, produced using freely available satellite imagery and upscalable techniques, will be important tools for understanding vegetation functioning at the landscape scale and for implementing restoration projects.
Abstract.
Author URL.
Barros FDV, Bittencourt PL, Eller CB, Signori‐Müller C, Meireles LD, Oliveira RS (2022). Phytogeographical origin determines Tropical Montane Cloud Forest hydraulic trait composition.
Functional Ecology,
36(3), 607-621.
Abstract:
Phytogeographical origin determines Tropical Montane Cloud Forest hydraulic trait composition
Abstract
Tropical montane cloud forests (TMCF) have unique climatic conditions, which allow the coexistence of plant lineages with different phytogeographical origins from tropical versus temperate climates. Future climate projections suggest TMCFs will be subjected to increasing drought stress due to fog uplift and higher temperatures, possibly leading to tree mortality and local extinctions, and consequently changes in forest composition and functioning. Characterizing community functional composition, trade‐offs among traits and the drivers of community assembly is of utmost importance to improve our capacity to predict the response of montane plant communities to forecast climate change.
Here, we aimed to test whether species from different phytogeographical origins (i.e. tropical – evergreen × deciduous − and temperate) differ in drought vulnerability and how the coexistence of these groups change the hydraulic composition of TMCFs. We used a framework based on measurements of key hydraulic traits (i.e. xylem embolism resistance, hydraulic safety margin, stomata control, turgor loss point, minimum water potential) of 16 dominant species (>70% of the forest basal area) within a TMCF in the Atlantic Rain Forest Domain in southeast Brazil. We used community‐weighted means to model whether removing each species group would change the community hydraulic functional composition.
Temperate, tropical deciduous and tropical evergreen groups differ in their hydraulic functioning and these differences explain forest functional composition and taxa dominance. Temperate and tropical deciduous taxa were consistently more vulnerable hydraulically (i.e. lower safety margins and embolism resistance). The coexistence of different phytogeographical lineages is a key determinant of TMCF hydraulic composition. We also used models including phylogeny to evaluate the variation of hydraulic traits across phytogeographical groups, and the results suggest some niche conservatism associated with plant hydraulic functioning.
Our results provide evidence of the importance of species phytogeographical origin on TMCF functioning, and niche conservatism in the evolution of hydraulic traits. The higher drought vulnerability observed in temperate group might be a mechanistic explanation for the restriction of temperate taxa distribution to wetter places during past colder and drier climate. Thus, we suggest hydraulic functional traits may be useful to predict future dynamics of TMCFs under changing climatic conditions.
Abstract.
Giles AL, Rowland L, Bittencourt PRL, Bartholomew DC, Coughlin I, Costa PB, Domingues T, Miatto RC, Barros FV, Ferreira LV, et al (2022). Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest.
Tree Physiol,
42(3), 537-556.
Abstract:
Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest.
Future climate change predictions for tropical forests highlight increased frequency and intensity of extreme drought events. However, it remains unclear whether large and small trees have differential strategies to tolerate drought due to the different niches they occupy. The future of tropical forests is ultimately dependent on the capacity of small trees (
Abstract.
Author URL.
2021
Oliveira RS, Eller CB, Barros FDV, Hirota M, Brum M, Bittencourt P (2021). Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems.
New Phytologist,
230(3), 904-923.
Abstract:
Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems
SummaryTropical ecosystems have the highest levels of biodiversity, cycle more water and absorb more carbon than any other terrestrial ecosystem on Earth. Consequently, these ecosystems are extremely important components of Earth’s climatic system and biogeochemical cycles. Plant hydraulics is an essential discipline to understand and predict the dynamics of tropical vegetation in scenarios of changing water availability. Using published plant hydraulic data we show that the trade‐off between drought avoidance (expressed as deep‐rooting, deciduousness and capacitance) and hydraulic safety (P50 – the water potential when plants lose 50% of their maximum hydraulic conductivity) is a major axis of physiological variation across tropical ecosystems. We also propose a novel and independent axis of hydraulic trait variation linking vulnerability to hydraulic failure (expressed as the hydraulic safety margin (HSM)) and growth, where inherent fast‐growing plants have lower HSM compared to slow‐growing plants. We surmise that soil nutrients are fundamental drivers of tropical community assembly determining the distribution and abundance of the slow‐safe/fast‐risky strategies. We conclude showing that including either the growth‐HSM or the resistance‐avoidance trade‐off in models can make simulated tropical rainforest communities substantially more vulnerable to drought than similar communities without the trade‐off. These results suggest that vegetation models need to represent hydraulic trade‐off axes to accurately project the functioning and distribution of tropical ecosystems.
Abstract.
Signori-Müller C, Oliveira RS, Barros FDV, Tavares JV, Gilpin M, Diniz FC, Zevallos MJM, Yupayccana CAS, Acosta M, Bacca J, et al (2021). Non-structural carbohydrates mediate seasonal water stress across Amazon forests.
Nat Commun,
12(1).
Abstract:
Non-structural carbohydrates mediate seasonal water stress across Amazon forests.
Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change.
Abstract.
Author URL.
Signori‐Müller C, Oliveira RS, Valentim Tavares J, Carvalho Diniz F, Gilpin M, de V. Barros F, Marca Zevallos MJ, Salas Yupayccana CA, Nina A, Brum M, et al (2021). Variation of non‐structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees.
Functional Ecology,
36(2), 341-355.
Abstract:
Variation of non‐structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees
Abstract
Tropical tree species span a range of life‐history strategies within a fast–slow continuum. The position of a species within this continuum is thought to reflect a negative relationship between growth and storage, with fast‐growing species allocating more carbon to growth and slow‐growing species investing more in storage. For tropical species, the relationship between storage and life‐history strategies has been largely studied on seedlings and less so in adult trees.
We evaluated how stored non‐structural carbohydrates (NSC) vary across adult trees spanning the fast–slow continuum in the Peruvian Amazon by: (a) analysing whole‐tree NSC in two species of contrasting growth and (b) investigating the relationships with key life‐history traits across a broader set of species.
Our results are consistent with a growth–storage trade‐off. The analysis of whole‐tree NSC revealed that the slow‐growing Eschweilera coriacea stored about 2.7 times as much NSC as the fast‐growing Bixa arborea due to markedly higher storage in woody stems and roots. B. arborea also had higher seasonality in NSC, reflecting its strong seasonality in stem growth. Across a range of species, stem starch was negatively related to species growth rate and positively related to wood density.
Given the role of NSC in mediating plants' response to stress, our results suggest that slow‐growing species with greater storage reserves may be more resilient to drought than fast‐growing species.
Abstract.
2020
Bittencourt PRL, Oliveira RS, da Costa ACL, Giles AL, Coughlin I, Costa PB, Bartholomew DC, Ferreira LV, Vasconcelos SS, Barros FV, et al (2020). Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought.
Global Change Biology,
26(6), 3569-3584.
Abstract:
Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought
AbstractThe fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality.
Abstract.
Giles A, Rowland L, Bittencourt P, Bartholomew D, Coughlin S, Costa PDB, Domingues T, Miatto R, Barros F, Ferreira L, et al (2020). Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged drought in a tropical forest.
2019
Barros FDV, Bittencourt PRL, Brum M, Restrepo-Coupe N, Pereira L, Teodoro GS, Saleska SR, Borma LS, Christoffersen BO, Penha D, et al (2019). Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought.
New Phytol,
223(3), 1253-1266.
Abstract:
Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought.
Reducing uncertainties in the response of tropical forests to global change requires understanding how intra- and interannual climatic variability selects for different species, community functional composition and ecosystem functioning, so that the response to climatic events of differing frequency and severity can be predicted. Here we present an extensive dataset of hydraulic traits of dominant species in two tropical Amazon forests with contrasting precipitation regimes - low seasonality forest (LSF) and high seasonality forest (HSF) - and relate them to community and ecosystem response to the El Niño-Southern Oscillation (ENSO) of 2015. Hydraulic traits indicated higher drought tolerance in the HSF than in the LSF. Despite more intense drought and lower plant water potentials in HSF during the 2015-ENSO, greater xylem embolism resistance maintained similar hydraulic safety margin as in LSF. This likely explains how ecosystem-scale whole-forest canopy conductance at HSF maintained a similar response to atmospheric drought as at LSF, despite their water transport systems operating at different water potentials. Our results indicate that contrasting precipitation regimes (at seasonal and interannual time scales) select for assemblies of hydraulic traits and taxa at the community level, which may have a significant role in modulating forest drought response at ecosystem scales.
Abstract.
Author URL.
Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LEOC, Barros F, et al (2019). Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest.
Journal of Ecology,
107(1), 318-333.
Abstract:
Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest
The relationship between rooting depth and above-ground hydraulic traits can potentially define drought resistance strategies that are important in determining species distribution and coexistence in seasonal tropical forests, and understanding this is important for predicting the effects of future climate change in these ecosystems. We assessed the rooting depth of 12 dominant tree species (representing c. 42% of the forest basal area) in a seasonal Amazon forest using the stable isotope ratios (δ18O and δ2H) of water collected from tree xylem and soils from a range of depths. We took advantage of a major ENSO-related drought in 2015/2016 that caused substantial evaporative isotope enrichment in the soil and revealed water use strategies of each species under extreme conditions. We measured the minimum dry season leaf water potential both in a normal year (2014; Ψnon-ENSO) and in an extreme drought year (2015; ΨENSO). Furthermore, we measured xylem hydraulic traits that indicate water potential thresholds trees tolerate without risking hydraulic failure (P50 and P88). We demonstrate that coexisting trees are largely segregated along a single hydrological niche axis defined by root depth differences, access to light and tolerance of low water potential. These differences in rooting depth were strongly related to tree size; diameter at breast height (DBH) explained 72% of the variation in the δ18Oxylem. Additionally, δ18Oxylem explained 49% of the variation in P50 and 70% of P88, with shallow-rooted species more tolerant of low water potentials, while δ18O of xylem water explained 47% and 77% of the variation of minimum Ψnon-ENSO and ΨENSO. We propose a new formulation to estimate an effective functional rooting depth, i.e. the likely soil depth from which roots can sustain water uptake for physiological functions, using DBH as predictor of root depth at this site. Based on these estimates, we conclude that rooting depth varies systematically across the most abundant families, genera and species at the Tapajós forest, and that understorey species in particular are limited to shallow rooting depths. Our results support the theory of hydrological niche segregation and its underlying trade-off related to drought resistance, which also affect the dominance structure of trees in this seasonal eastern Amazon forest. Synthesis. Our results support the theory of hydrological niche segregation and demonstrate its underlying trade-off related to drought resistance (access to deep water vs. tolerance of very low water potentials). We found that the single hydrological axis defining water use traits was strongly related to tree size, and infer that periodic extreme droughts influence community composition and the dominance structure of trees in this seasonal eastern Amazon forest.
Abstract.
Bittencourt PRL, Barros FDV, Eller CB, Müller CS, Oliveira RS (2019). The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate.
Agricultural and Forest Meteorology,
265, 359-369.
Abstract:
The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate
Fog is a frequent phenomenon in tropical montane cloud forests (TMCFs). These ecosystems are important to the water supply of adjacent lowland regions which is largely determined by the effect of fog on TCMF evapotranspiration rates and hydrological balance. Understanding fog regimes at fine-grained temporal resolution is key to predict plant functioning and effects of climatic changes in TMCFs, especially on key hydrological services that these forests provide. Here, we combine a suite of micrometeorological and hydrological sensors with a visibilimeter, a reliable sensor of fog occurrence, to gather fine-grained information on fog frequency, duration and timing and its contribution to water inputs, light availability and microclimatic variability in a Brazilian TMCF. Despite occurring on 64% of days, fog was highly variable at daily and seasonal scales, occurring mostly at night and during the rainy season. Approximately 1200 liters of fog were intercepted per tree per year (259 mm or 10.7% of total net precipitation). Fog also increased net precipitation provided by concomitant fog-rain events. Monthly net precipitation to precipitation ratio, a measure of how much water arrives at the soil and how much evaporates or is intercepted by the canopy, was 0.96 - much higher than the 0.72 typical of lowland rainforest, due to the additional fog water input on TMCF. Cloudiness, and not fog, dominated light availability and inter-day microclimatic variability (air temperature and vapor pressure deficit). High fog regime variability indicates that understanding TMCFs functioning requires integration of plant function with fine-grained data of fog and cloud occurrence. We discuss possible consequences of our results to TMCFs plant functioning.
Abstract.
2018
Aparecido LMT, Teodoro GS, Mosquera G, Brum M, Barros FDV, Pompeu PV, Rodas M, Lazo P, Müller CS, Mulligan M, et al (2018). Ecohydrological drivers of Neotropical vegetation in montane ecosystems.
Ecohydrology,
11(3).
Abstract:
Ecohydrological drivers of Neotropical vegetation in montane ecosystems
Montane ecosystems are known for their high numbers of endemic species, unique climate conditions, and wide variety of ecosystem services such as water supply and carbon storage. Although many ecohydrological and climatic studies of montane environments have been carried out in temperate and boreal regions, few have been done in Neotropical regions. Hence, the objective of this review is to synthesize the existing literature on the main factors (biotic and abiotic) that influence vegetation distribution, functional traits, and ecohydrological processes and feedbacks in tropical montane ecosystems and to identify key knowledge gaps. Most of the literature used includes work conducted in Neotropical montane rainforests, cloud forests, and grass/scrublands (e.g. páramos, punas, and campos de altitude/rupestres). Fog is a major climatic attribute in tropical montane habitats. We found that fog regimes (frequency and intensity of fog events) influence both water inputs (i.e. canopy interception and foliar water uptake) and outputs (evapotranspiration) and represent an important driver of local species composition, dominance of plant functional types, and ecological functioning. The stability and conservation of tropical montane ecosystems depends on such ecohydrological fluxes, which are sensitive to increases in air temperature and changing precipitation and fog regimes. Furthermore, to better inform effective conservation and restoration strategies, more work is needed to elucidate how key ecohydrological processes are affected by land use conversion to agriculture and pasture lands, as human activities influence the water budgets in Neotropical montane watersheds not only at regional-scales but also globally.
Abstract.
Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FDV, Cordoba EC, Fagundes MV, Garcia S, et al (2018). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients.
New Phytologist,
221(3), 1457-1465.
Abstract:
Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients
Summary
Species distribution is strongly driven by local and global gradients in water availability but the underlying mechanisms are not clear. Vulnerability to xylem embolism (P50) is a key trait that indicates how species cope with drought and might explain plant distribution patterns across environmental gradients. Here we address its role on species sorting along a hydro‐topographical gradient in a central Amazonian rainforest and examine its variance at the community scale.
We measured P50 for 28 tree species, soil properties and estimated the hydrological niche of each species using an indicator of distance to the water table (HAND).
We found a large hydraulic diversity, covering as much as 44% of the global angiosperm variation in P50. We show that P50: contributes to species segregation across a hydro‐topographic gradient in the Amazon, and thus to species coexistence; is the result of repeated evolutionary adaptation within closely related taxa; is associated with species tolerance to P‐poor soils, suggesting the evolution of a stress‐tolerance syndrome to nutrients and drought; and is higher for trees in the valleys than uplands.
The large observed hydraulic diversity and its association with topography has important implications for modelling and predicting forest and species resilience to climate change.
Abstract.
van Emmerik T, Steele-Dunne S, Gentine P, Oliveira RS, Bittencourt P, Barros F, van de Giesen N (2018). Ideas and perspectives: Tree–atmosphere interaction responds to water-related stem variations.
Biogeosciences,
15(21), 6439-6449.
Abstract:
Ideas and perspectives: Tree–atmosphere interaction responds to water-related stem variations
Abstract. Land–atmosphere interactions depend on momentum transfer from the atmosphere to the canopy, which in turn depends on the tree drag coefficient. It is known that the drag coefficient, and thus tree–atmosphere momentum transfer, can vary strongly within a canopy. Yet, only few measurements are available to study the variation of tree–atmosphere momentum transfer in time and space, and in response to tree water deficit. In this paper we use accelerometers to estimate tree–atmosphere momentum transfer for 19 individual trees of 7 different species in the Brazilian Amazon. The 5-month monitoring period included the transition from wet to dry months. Here, we demonstrate that, under field conditions, tree–atmosphere momentum transfer can vary considerably in time and space (up to a factor of 2.5). Increased water-related stem variations during the dry months are related to observed changes in tree–atmosphere momentum transfer, which is hypothesized to be caused by tree-water-deficit-induced changes in tree mass.
Abstract.
Eller CB, Rowland L, Oliveira RS, Bittencourt PRL, Barros FV, da Costa ACL, Meir P, Friend AD, Mencuccini M, Sitch S, et al (2018). Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics.
Philos Trans R Soc Lond B Biol Sci,
373(1760).
Abstract:
Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics.
The current generation of dynamic global vegetation models (DGVMs) lacks a mechanistic representation of vegetation responses to soil drought, impairing their ability to accurately predict Earth system responses to future climate scenarios and climatic anomalies, such as El Niño events. We propose a simple numerical approach to model plant responses to drought coupling stomatal optimality theory and plant hydraulics that can be used in dynamic global vegetation models (DGVMs). The model is validated against stand-scale forest transpiration (E) observations from a long-term soil drought experiment and used to predict the response of three Amazonian forest sites to climatic anomalies during the twentieth century. We show that our stomatal optimization model produces realistic stomatal responses to environmental conditions and can accurately simulate how tropical forest E responds to seasonal, and even long-term soil drought. Our model predicts a stronger cumulative effect of climatic anomalies in Amazon forest sites exposed to soil drought during El Niño years than can be captured by alternative empirical drought representation schemes. The contrasting responses between our model and empirical drought factors highlight the utility of hydraulically-based stomatal optimization models to represent vegetation responses to drought and climatic anomalies in DGVMs.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Abstract.
Author URL.
Eller CB, de V Barros F, Bittencourt PRL, Rowland L, Mencuccini M, Oliveira RS (2018). Xylem hydraulic safety and construction costs determine tropical tree growth.
Plant Cell Environ,
41(3), 548-562.
Abstract:
Xylem hydraulic safety and construction costs determine tropical tree growth.
Faster growth in tropical trees is usually associated with higher mortality rates, but the mechanisms underlying this relationship are poorly understood. In this study, we investigate how tree growth patterns are linked with environmental conditions and hydraulic traits, by monitoring the cambial growth of 9 tropical cloud forest tree species coupled with numerical simulations using an optimization model. We find that fast-growing trees have lower xylem safety margins than slow-growing trees and this pattern is not necessarily linked to differences in stomatal behaviour or environmental conditions when growth occurs. Instead, fast-growing trees have xylem vessels that are more vulnerable to cavitation and lower density wood. We propose the growth - xylem vulnerability trade-off represents a wood hydraulic economics spectrum similar to the classic leaf economic spectrum, and show through numerical simulations that this trade-off can emerge from the coordination between growth rates, wood density, and xylem vulnerability to cavitation. Our results suggest that vulnerability to hydraulic failure might be related with the growth-mortality trade-off in tropical trees, determining important life history differences. These findings are important in furthering our understanding of xylem hydraulic functioning and its implications on plant carbon economy.
Abstract.
Author URL.
2017
GARCIA LC, BARROS FV, LEMOS-FILHO JP (2017). Environmental drivers on leaf phenology of ironstone outcrops species under seasonal climate. Anais da Academia Brasileira de Ciências, 89(1), 131-143.
van Emmerik T, Steele‐Dunne S, Paget A, Oliveira RS, Bittencourt PRL, Barros FDV, van de Giesen N (2017). Water stress detection in the Amazon using radar.
Geophysical Research Letters,
44(13), 6841-6849.
Abstract:
Water stress detection in the Amazon using radar
AbstractThe Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large‐scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non‐Sun‐synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.
Abstract.
2016
Pereira L, Bittencourt PRL, Oliveira RS, Junior MBM, Barros FV, Ribeiro RV, Mazzafera P (2016). Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics.
New Phytologist,
211(1), 357-370.
Abstract:
Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics
Summary
Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts.
Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials.
We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel‐ and tracheid‐bearing species to test the hypothesis that the air flow is related to embolism.
Air flow came almost exclusively from air inside the branch during the 2.5‐min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.
Abstract.
2014
Oliveira RS, Christoffersen BO, de V. Barros F, Teodoro GS, Bittencourt P, Brum-Jr MM, Viani RAG (2014). Changing precipitation regimes and the water and carbon economies of trees. Theoretical and Experimental Plant Physiology, 26(1), 65-82.
2013
Moreira ASFP, Queiroz ACL, Barros FDV, Goulart MF, Pires de Lemos-Filho J (2013). Do leaf traits in two Dalbergia species present differential plasticity in relation to light according to their habitat of origin?.
Australian Journal of Botany,
61(8), 592-592.
Abstract:
Do leaf traits in two Dalbergia species present differential plasticity in relation to light according to their habitat of origin?
The phenotypic plasticity to light of two congeneric species of leguminous trees from distinct habitats was evaluated in a common-garden experiment. For that, we assessed the following two groups of leaf morphological and anatomical traits of 1-year-old seedlings: (1) traits related to light interception (tissues thickness and leaflet mass per area), and (2) traits related to gas exchange (number of leaflets per leaf and measurements of stomatal size and density). Dalbergia nigra (Vell.) Allemão ex Benth. is an endemic Atlantic forest species, and D. miscolobium Benth. is a typical cerrado species. Both were grown under shade and full-sunlight conditions. The phenotypic plasticity of leaves was determined by a relative distance plasticity index (RDPI). For both species, sun leaflets were thicker than shade ones, and only D. nigra presented lower values for stomatal density (nst), percentage of the leaflet area occupied by stomatal pores (nast) and estimated stomatal conductance (gst) under shade conditions. The forest species (D. nigra) had higher plasticity for variables related to gas exchange (number of leaflets per leaf, nst, ast, nast and gst), whereas the cerrado species (D. miscolobium) had higher plasticity for variables related to light interception, such as leaflet mass per area, leaflet thickness and palisade and spongy parenchyma thickness. The degree of plasticity was different for each analysed parameter, and not used to define which species is more plastic. The leaf traits of D. nigra and D. miscolobium that showed high plasticity were related to resources that are not limiting to improve its photosynthesis in a changing light environment.
Abstract.
2011
Barros FDV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, Lemos-Filho JPD (2011). Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna). Plant Biology, no-no.
Goulart MF, Lovato MB, de Vasconcellos Barros F, Valladares F, Lemos-Filho JP (2011). Which Extent is Plasticity to Light Involved in the Ecotypic Differentiation of a Tree Species from Savanna and Forest?.
Biotropica,
43(6), 695-703.
Abstract:
Which Extent is Plasticity to Light Involved in the Ecotypic Differentiation of a Tree Species from Savanna and Forest?
Light intensity and heterogeneity are some of the main environmental factors that differ between forest and savanna habitats, and plant species from these habitats form distinct functional types. In this study, we tested the hypothesis that not only differences in morphological and physiological traits but also phenotypic plasticity in response to light are involved in adaptation to forest and savanna habitats by investigating ecotypic differentiation between populations of Plathymenia reticulata (Leguminosae: Mimosoideae), a tree from the Brazilian Atlantic Forest and the Brazilian Cerrado (savanna). Seeds from four natural populations (one from each biome core area and two from ecotonal regions) were grown in a common garden with four light treatments. Fifteen morphological and physiological characteristics were evaluated until individuals reached 6 mo old. Comparisons among populations showed differences for seven traits in at least one light treatment. These differences pointed to local adaptation to different biomes. Populations showed different levels of phenotypic plasticity in response to light in seven traits. Higher plasticity was found either in the forest core population or ecotonal populations; lower values were found in the cerrado core population. Lower plasticity in the cerrado population emphasizes the stress resistant syndrome, as lower plasticity is probably advantageous in a habitat where a conservative resource use is crucial. Higher plasticity in forest individuals suggests higher ability in exploiting the light heterogeneity in this habitat. Also, higher plasticity in ecotonal populations can be important to ensure the maintenance of P. reticulata in these temporally and spatially dynamic areas. Abstract in Portugese is available at © 2011 the Author(s). Journal compilation © 2011 by the Association for Tropical Biology and Conservation.
Abstract.
2009
Garcia LC, Barros FV, Lemos-Filho JP (2009). Fructification phenology as an important tool in the recovery of iron mining areas in Minas Gerais, Brazil.
Brazilian Journal of Biology,
69(3), 887-893.
Abstract:
Fructification phenology as an important tool in the recovery of iron mining areas in Minas Gerais, Brazil
"Canga" is a name given to the ferruginous rocky fields that can be found in the "Quadrilátero Ferrífero" of Minas Gerais, Brazil. The endemism and species richness make them areas of special biological importance, regarded as high-priority for conservation. Nevertheless, they are being threatened by intense mining activity. Aiming to understand more about this flora, this study was performed in order to determine the maturation or dispersal period of the fruits of four Canga species, Alibertia vaccinioides K.Schum. (Rubiaceae), Coccoloba acrostichoides Cham. (Polygonaceae), Miconia sellowiana Naudin (Melastomataceae), and one probable new species of Calyptranthes Sw. (Myrtaceae). Although fruit maturation or dispersal tended to occur at the end of the dry season, some asynchrony was observed in these species, with food sources being available during most of the year. This shows that these species have the potential to attract animals the whole year round, and planting them for the recovery of iron mining areas may increase the community's self-regeneration capacity, leading to a more successful restoration process.
Abstract.
2006
Garcia LC, Barros FDV, Lemos Filho JP (2006). Comportamento germinativo de duas espécies de canga ferrífera: Baccharis retusa DC. (Asteraceae) e Tibouchina multiflora Cogn. (Melastomataceae).
Acta Botanica Brasilica,
20(2), 443-448.
Abstract:
Comportamento germinativo de duas espécies de canga ferrífera: Baccharis retusa DC. (Asteraceae) e Tibouchina multiflora Cogn. (Melastomataceae)
O objetivo desse estudo foi avaliar o comportamento germinativo de Bacccharis retusa e Tibouchina multiflora, espécies que ocorrem na vegetação de canga no Quadrilátero Ferrífero de Minas Gerais. Diásporos coletados no município de Barão de Cocais foram colocados para germinar nas temperaturas de 15, 20, 25 e 30 ºC na presença de luz contínua ou no escuro. As sementes mantidas inicialmente no escuro foram posteriormente transferidas para a presença de luz, mantendo-se as mesmas temperaturas. Os diásporos das duas espécies apresentaram comportamento fotoblástico positivo, com germinação inexpressiva no escuro em todas as temperaturas testadas. Na presença de luz contínua as sementes de T. multiflora não apresentaram diferenças na porcentagem final de germinação em todas as temperaturas testadas, mas B. retusa apresentou menor porcentagem final de germinação a 30 ºC. Os diásporos das duas espécies mantidos inicialmente no escuro, germinaram rapidamente após serem transferidos para luz branca contínua. Entretanto, não foi verificado efeito significativo do tempo de permanência no escuro nos valores finais de porcentagem de germinação alcançados a cada temperatura. Esses resultados sugerem que essas duas espécies de canga apresentam potencial para a formação de banco de sementes no solo.
Abstract.