Publications by category
Journal articles
Parker TC, Chomel M, Clemmensen KE, Friggens NL, Hartley IP, Johnson D, Kater I, Krab EJ, Lindahl BD, Street LE, et al (2022). Resistance of subarctic soil fungal and invertebrate communities to disruption of below‐ground carbon supply. Journal of Ecology, 110(12), 2883-2897.
Friggens NL, Hartley IP, Parker TC, Subke J, Wookey PA (2022). Trees out‐forage understorey shrubs for nitrogen patches in a subarctic mountain birch forest.
Oikos,
2023(4).
Abstract:
Trees out‐forage understorey shrubs for nitrogen patches in a subarctic mountain birch forest
Nitrogen (N), acquired by roots and mycorrhizal fungi and supplied to plant foliage, is a growth‐limiting nutrient at the subarctic treeline. Due to this limitation, interspecific competition and acquisition of N is an important control on plant community composition and distribution. The ability of trees and shrubs to access N shapes community dynamics at this ecotone undergoing species range shifts and changes in primary productivity driven by climate change. Using 15N soil labelling we investigate the fate of soil inorganic N, and spatial distances over which trees and understorey shrubs access soil N, in a treeline forest. 15N was injected into soil rooting zones in discrete 1 m2 patches and foliar samples were collected from trees between 1 and 50 m away, and understorey shrubs between 0.5 and 11 m away from labelled soil. The 15N label was found in mountain birch trees up to 5 m, and in understorey shrubs up to 2 m, away from labelled soil. We estimate that 1.27% of pulse‐derived N was found in foliage of birch trees, compared to 1.16% in the understorey. However, mountain birch trees contributed only 31% of ecosystem leaf area index (LAI), thus there was a disproportionate allocation of added label to the birch canopy compared with its contribution to ecosystem LAI. The difference in root and mycorrhizal exploration distances and community N partitioning between mountain birch trees and understorey shrubs may confer competitive advantage to trees with respect to nitrogen and nutrient patches, which may alter plant community structures within these forests. This is particularly important considering predicted climate‐driven tree and tall shrub expansion in subarctic regions, with likely consequences for ecosystem N and carbon (C) cycling, as well as for community composition and biodiversity.
Abstract.
Friggens NL, Hartley IP, Grant HK, Parker TC, Subke J-A, Wookey PA (2022). Whole-crown 13C-pulse labelling in a sub-arctic woodland to target canopy-specific carbon fluxes.
Trees,
36(4), 1437-1445.
Abstract:
Whole-crown 13C-pulse labelling in a sub-arctic woodland to target canopy-specific carbon fluxes
. Key message
. Whole-crown 13C-pulse labelling can target tree canopy C fluxes in regions with dense understorey cover and investigate how increased photosynthetic C inputs may affect whole-ecosystem C fluxes.
.
. Abstract
. Climate change-driven increases in plant productivity have been observed at high northern latitudes. These trends are driven, in part, by the increasing abundance of tall shrub and tree species in arctic ecosystems, and the advance of treelines. Higher plant productivity may alter carbon (C) allocation and, hence, ecosystem C cycling and soil C sequestration. It is important to understand the contributions that the newly established canopy forming overstorey species makes to C cycling in these ecosystems. However, the presence of a dense understorey cover makes this challenging, with established partitioning approaches causing disturbance and potentially introducing measurement artefacts. Here, we develop an in situ whole-crown 13C-pulse labelling technique to isolate canopy C fluxes in areas of dense understorey cover. The crowns of five mountain birch (Betula pubescens ssp. czerepanovii) trees were provided with a 13CO2 pulse using portable field equipment, and leaf samples were collected from neighbouring con-specific trees and hetero-specific understorey shrubs on days 1–10 and 377 post-crown labelling. We found effective and long-term enrichment of foliage in labelled trees, but no evidence of the 13C-signal in con- or hetero-specific neighbouring trees or woody shrubs. This method is promising and provides a valuable tool to isolate the role of canopy tree species in ecosystems with dense understorey cover.
.
Abstract.
Parker TC, Clemmensen KE, Friggens NL, Hartley IP, Johnson D, Lindahl BD, Olofsson J, Siewert MB, Street LE, Subke J-A, et al (2020). Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape.
New Phytol,
227(6), 1818-1830.
Abstract:
Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape.
In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks predominantly are located belowground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. In order to identify the role of canopy-forming species in belowground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and belowground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53%, which is double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic because productivity and ecosystem C sequestration are not synonymous.
Abstract.
Author URL.
Friggens NL, Hester AJ, Mitchell RJ, Parker TC, Subke J, Wookey PA (2020). Tree planting in organic soils does not result in net carbon sequestration on decadal timescales.
Global Change Biology,
26(9), 5178-5188.
Abstract:
Tree planting in organic soils does not result in net carbon sequestration on decadal timescales
AbstractTree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes.
Abstract.
Friggens NL, Aspray TJ, Parker TC, Subke J-A, Wookey PA (2019). Spatial patterns in soil organic matter dynamics are shaped by mycorrhizosphere interactions in a treeline forest.
Plant and Soil,
447(1-2), 521-535.
Abstract:
Spatial patterns in soil organic matter dynamics are shaped by mycorrhizosphere interactions in a treeline forest
Abstract
. Aims
. In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes.
.
. Methods
. We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR.
.
. Results
. Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees.
.
. Conclusions
. As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration.
.
Abstract.
Friggens NL (2017). Diversity and community composition of aquatic ascomycetes varies between freshwater, estuarine and marine habitats in western Scotland. Mycosphere, 8(9), 1267-1287.
Publications by year
2022
Parker TC, Chomel M, Clemmensen KE, Friggens NL, Hartley IP, Johnson D, Kater I, Krab EJ, Lindahl BD, Street LE, et al (2022). Resistance of subarctic soil fungal and invertebrate communities to disruption of below‐ground carbon supply. Journal of Ecology, 110(12), 2883-2897.
Friggens NL, Hartley IP, Parker TC, Subke J, Wookey PA (2022). Trees out‐forage understorey shrubs for nitrogen patches in a subarctic mountain birch forest.
Oikos,
2023(4).
Abstract:
Trees out‐forage understorey shrubs for nitrogen patches in a subarctic mountain birch forest
Nitrogen (N), acquired by roots and mycorrhizal fungi and supplied to plant foliage, is a growth‐limiting nutrient at the subarctic treeline. Due to this limitation, interspecific competition and acquisition of N is an important control on plant community composition and distribution. The ability of trees and shrubs to access N shapes community dynamics at this ecotone undergoing species range shifts and changes in primary productivity driven by climate change. Using 15N soil labelling we investigate the fate of soil inorganic N, and spatial distances over which trees and understorey shrubs access soil N, in a treeline forest. 15N was injected into soil rooting zones in discrete 1 m2 patches and foliar samples were collected from trees between 1 and 50 m away, and understorey shrubs between 0.5 and 11 m away from labelled soil. The 15N label was found in mountain birch trees up to 5 m, and in understorey shrubs up to 2 m, away from labelled soil. We estimate that 1.27% of pulse‐derived N was found in foliage of birch trees, compared to 1.16% in the understorey. However, mountain birch trees contributed only 31% of ecosystem leaf area index (LAI), thus there was a disproportionate allocation of added label to the birch canopy compared with its contribution to ecosystem LAI. The difference in root and mycorrhizal exploration distances and community N partitioning between mountain birch trees and understorey shrubs may confer competitive advantage to trees with respect to nitrogen and nutrient patches, which may alter plant community structures within these forests. This is particularly important considering predicted climate‐driven tree and tall shrub expansion in subarctic regions, with likely consequences for ecosystem N and carbon (C) cycling, as well as for community composition and biodiversity.
Abstract.
Friggens NL, Hartley IP, Grant HK, Parker TC, Subke J-A, Wookey PA (2022). Whole-crown 13C-pulse labelling in a sub-arctic woodland to target canopy-specific carbon fluxes.
Trees,
36(4), 1437-1445.
Abstract:
Whole-crown 13C-pulse labelling in a sub-arctic woodland to target canopy-specific carbon fluxes
. Key message
. Whole-crown 13C-pulse labelling can target tree canopy C fluxes in regions with dense understorey cover and investigate how increased photosynthetic C inputs may affect whole-ecosystem C fluxes.
.
. Abstract
. Climate change-driven increases in plant productivity have been observed at high northern latitudes. These trends are driven, in part, by the increasing abundance of tall shrub and tree species in arctic ecosystems, and the advance of treelines. Higher plant productivity may alter carbon (C) allocation and, hence, ecosystem C cycling and soil C sequestration. It is important to understand the contributions that the newly established canopy forming overstorey species makes to C cycling in these ecosystems. However, the presence of a dense understorey cover makes this challenging, with established partitioning approaches causing disturbance and potentially introducing measurement artefacts. Here, we develop an in situ whole-crown 13C-pulse labelling technique to isolate canopy C fluxes in areas of dense understorey cover. The crowns of five mountain birch (Betula pubescens ssp. czerepanovii) trees were provided with a 13CO2 pulse using portable field equipment, and leaf samples were collected from neighbouring con-specific trees and hetero-specific understorey shrubs on days 1–10 and 377 post-crown labelling. We found effective and long-term enrichment of foliage in labelled trees, but no evidence of the 13C-signal in con- or hetero-specific neighbouring trees or woody shrubs. This method is promising and provides a valuable tool to isolate the role of canopy tree species in ecosystems with dense understorey cover.
.
Abstract.
2020
Parker TC, Clemmensen KE, Friggens NL, Hartley IP, Johnson D, Lindahl BD, Olofsson J, Siewert MB, Street LE, Subke J-A, et al (2020). Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape.
New Phytol,
227(6), 1818-1830.
Abstract:
Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape.
In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks predominantly are located belowground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. In order to identify the role of canopy-forming species in belowground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and belowground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53%, which is double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic because productivity and ecosystem C sequestration are not synonymous.
Abstract.
Author URL.
Friggens NL, Hester AJ, Mitchell RJ, Parker TC, Subke J, Wookey PA (2020). Tree planting in organic soils does not result in net carbon sequestration on decadal timescales.
Global Change Biology,
26(9), 5178-5188.
Abstract:
Tree planting in organic soils does not result in net carbon sequestration on decadal timescales
AbstractTree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes.
Abstract.
2019
Friggens NL, Aspray TJ, Parker TC, Subke J-A, Wookey PA (2019). Spatial patterns in soil organic matter dynamics are shaped by mycorrhizosphere interactions in a treeline forest.
Plant and Soil,
447(1-2), 521-535.
Abstract:
Spatial patterns in soil organic matter dynamics are shaped by mycorrhizosphere interactions in a treeline forest
Abstract
. Aims
. In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes.
.
. Methods
. We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR.
.
. Results
. Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees.
.
. Conclusions
. As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration.
.
Abstract.
2017
Friggens NL (2017). Diversity and community composition of aquatic ascomycetes varies between freshwater, estuarine and marine habitats in western Scotland. Mycosphere, 8(9), 1267-1287.